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NB: SVTX secodaries, hits, cells, eval unchanged 

CaloRawClusterEval



PHG4SHOWER OBJECT
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Showers are stored in PHG4TruthInfoContainer:



SHOWER CREATION
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Shower objects are automatically created for all volumes and all PHG4HitContainers

PHG4TruthInfoTrackingAction::PreUserTrackingAction()

each primary input particle gets a shower object



SHOWER CREATION #2 18

PHG4TruthInfoTrackingAction::PostUserTrackingAction()

each secondary created is passed a pointer to the primary shower

(neat trick for passing information forward in GEANT)



SHOWER CREATION #3 19

PHG4*SteppingAction::SteppingAction()

hits are told which shower they belong to

showers are told which hits they contain



SHOWER CREATION #4 20

Showers are cycled to remove zero energy hits, and summarize characteristics

(example above shows energy weighted position PCA analysis)

PHG4TruthEventAction::EndOfEventAction(),PruneShowers(), ProcessShowers()



RAWTOWER MODIFICATION
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RawTowerv1.h
dual interface functions for cells and showers 

(similar set of mods to Cell objects)



TYPICAL USER EVAL OBJECT CHANGES
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CaloRawClusterEval.h

works with reduced DSTs

works with reduced DSTs or 
full DST (needs PHG4Hits)

cluster<=>particle interface unchanged, 
but uses shower storage for CPU benefits 
NB: there minor name changes to break 
shower/particle naming collisions



REDUCTION OF DST 23

Shower objects are automatically created for all volumes and all PHG4HitContainers 
but deletions are done manually for specified containers

PHG4DstCompressReco* compress = new PHG4DstCompressReco("PHG4DstCompressReco");

compress->AddHitContainer("G4HIT_CEMC_ELECTRONICS");

compress->AddHitContainer("G4HIT_CEMC");

compress->AddHitContainer("G4HIT_ABSORBER_CEMC");

compress->AddHitContainer("G4HIT_CEMC_SPT");

compress->AddHitContainer("G4HIT_ABSORBER_HCALIN");

compress->AddHitContainer("G4HIT_HCALIN");

compress->AddHitContainer("G4HIT_HCALIN_SPT");

compress->AddHitContainer("G4HIT_MAGNET");

compress->AddHitContainer("G4HIT_ABSORBER_HCALOUT");

compress->AddHitContainer("G4HIT_HCALOUT");

compress->AddHitContainer("G4HIT_BH_1");

compress->AddHitContainer("G4HIT_BH_FORWARD_PLUS");

compress->AddHitContainer("G4HIT_BH_FORWARD_NEG");

compress->AddCellContainer("G4CELL_CEMC");

compress->AddCellContainer("G4CELL_HCALIN");

compress->AddCellContainer("G4CELL_HCALOUT");

compress->AddTowerContainer("TOWER_SIM_CEMC");

compress->AddTowerContainer("TOWER_RAW_CEMC");

compress->AddTowerContainer("TOWER_CALIB_CEMC");

compress->AddTowerContainer("TOWER_SIM_HCALIN");

compress->AddTowerContainer("TOWER_RAW_HCALIN");

compress->AddTowerContainer("TOWER_CALIB_HCALIN");

compress->AddTowerContainer("TOWER_SIM_HCALOUT");

compress->AddTowerContainer("TOWER_RAW_HCALOUT");

compress->AddTowerContainer("TOWER_CALIB_HCALOUT");

se->registerSubsystem(compress);

So with this list, showers are 
created for the forward 
calorimeters and utilized by the 
evaluation, but not yet deleted. 

Secondary particles and 
vertexes are preserved by 
sweeping through all hit 
containers named “G4HIT_*” 
and preserving objects needed 
by non-designated objects. 
Thus, a forward tracker when 
implemented will preserve its 
truth information



DST SIZE PERFORMANCE
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5 random Central HIJING 4-7 fm event with absorber hits

Without compression: 621MB / 5 events = 124 MB / event 
With shower compression: 17 MB / 5 events = 3.4 MB / event 

3.4 MB/event, a factor 37 better than full DST 

What dominates the DST file size after compression? 
19% SVTXSUPPORT G4Hits <= add to compression 
16% SVTX G4Hits 
14% PIPE G4Hits <= add this to compression 
13% PHG4Showers 
11% SimTowers 
10% PHG4Particles <= includes SVTXSUPPORT/PIPE secondaries 
7% GenEvent record 
6% Raw and Calib towers <= these could be regenerated 
4% PHG4Vertexes <= includes SVTXSUPPORT/PIPE secondaries 

A factor ~70 might be possible with some additional cleanup 



PROFILING MID-CENTRAL EVENTS
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1 random mid-central HIJING 4-7 fm event, no absorber hits (memory limit on my laptop 
and my patience limit with callgrind). It includes shower generation, removal of redundant 
truth, full set of default evaluation, so tests both “reco" CPU and “analysis” CPU 

highlighted positions in following slides
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SUMMARY
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Changes are available in Pull Request #101. DST size performance and 
CPU performance are very encouraging. Most run-time errors are 
patched.


Implementation comments, criticisms are requested. How could this work 
differently?


I need feedback on what the DST format will look like: Do we write out 
empty nodes or remove them completely? so that I can fully test that read 
back


Jin wants sub-showers to manage radiative photons, these can be stored 
as redundant secondary showers. Map storage is ready for sub-shower 
storage. One option: write out every first generation sub shower. Other 
ideas are requested, but more complicated ideas need an implementation 
plan or at least a very specific algorithm for creation.
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